
A&D Learning Goals
DISCLAIMER: This document serves as a supplementary study aid and is not an official course
publication. It was prepared by Josia Heger (Teaching Assistant) and reflects his personal
recommendations regarding study strategies and important concepts. There is no guarantee that
the exam only covers topics listed here.

Mathematical Foundations
 Write induction proofs using the structure: base case, induction hypothesis, and induction

step. You should also be able to prove more difficult statements, e.g. inequalities or the number of
leaves on a specific tree. Understand when you need more than one base case and don’t make off-
by-one errors for the induction hypothesis.

 Know the Gaussian Sum Formula: ﻿

Maybe this is also useful: ﻿

Maybe this is also useful: ﻿

Asymptotic Growth
 Know the definition that ﻿ grows asymptotically faster that ﻿ if ﻿.

 Given two functions, compute the limit and decide if one grows asymptotically faster than the
other.

 Know the following derivation rules:

﻿

﻿

﻿

﻿

﻿

﻿

﻿ (least important)

 Know the following power rules:

﻿

﻿

﻿

﻿

﻿

k =∑k=1
n 1 + 2 + 3 + ⋯ + n = ​2

n(n+1)

​ k =∑k=1
n 2 1 +2 2 +2 3 +2 ⋯ + n =2

​6
n(n+1)(2n+1)

​ k =∑k=1
n 3 1 +3 2 +3 3 +3 ⋯ + n =3

​[2
n(n+1)]

2

f g ​ ​ =
n→∞
lim

f(n)
g(n)

0

(x) =n ′ n ⋅ xn−1

(f + g) =′ f +′ g′

(e) =x ′ ex

(ln(x)) =′
​x

1

(f ⋅ g) =′ f g +′ fg′

​ =(
g
f)

′
​

g2
f g−fg′ ′

(f(g(x))) =′ f (g(x)) ⋅′ g (x)′

a ⋅m a =n am+n

​ =
an
am am−n

(a) =m n am⋅n

(a ⋅ b) =n a ⋅n bn

​ =(
b
a)

n
​

bn
an

A&D Learning Goals 1

 Know the following log rules:

﻿

﻿

﻿

 Know L’Hopital and when you can apply it

 Use substitution e.g. ﻿ or ﻿ to simplify a limit

 Know the ﻿ or ﻿ trick

 Know the definitions of ﻿, ﻿, ﻿ and how to use limits to show that e.g. ﻿

 Know the sandwich theorem

 Know how to lower/upper bound sums, e.g. ﻿

 Know that ﻿

 Know when you can ignore constants (e.g. for or ﻿) and when not (e.g. for ﻿)

 Count function calls for a given pseudo code snippets as an exact sum (don’t make off-by-one
errors) and in ﻿ notation.

 Given a function in the form ﻿ you should be able to telescope it to find an
explicit formula for ﻿.

 Given the master theorem and a function in the form ﻿ you should be
able to decide what case of the master theorem it is and find explicit formula for ﻿.

Searching and Sorting
 Know what linear search does and the lower bound for searching

 Know the pseudocode of binary search and know its runtime. You should be able to program it
in java.

For the following algorithms, you should be able to simulate the algorithm step by step on a given
array on paper. You should know the runtime and how many swaps/comparisons it needs in
best/worst case in ﻿ or ﻿ notation. You should also know the invariants (except for quick sort and
merge sort) and what algorithms are in-place and if they have good locality.

 Bubble Sort

 Selection Sort

 Insertion Sort

 Merge Sort (If you want to learn to program a sorting algorithm, choose merge sort. However
programming a sorting algorithm has never been asked at any exam… So I would recommend
studying other things first)

 Quick Sort

 Heap Sort

 Know the precise definition of a heap, how to perform ExtractMax and how to insert values.

log ​(x) =a ​log ​(a)b

log ​(x)b

log ​(x) =a
r r ⋅ log ​(x)a

log ​(x ⋅a y) = log (x) +a log ​(y)a

y = log(n) y = 1/n

eln 2log ​2

O Θ Ω f ≤ O(g)

​ i∑i=1
n 3

1 ≤ log n ≤ ​ ≤n n ≤ n log n ≤ n ≤2 2 ≤n n! ≤ nn

log ​ nc log nc cn

O

T (n) ≤ c + T (n/2)
T (n)

T (n) ≤ aT (n/2) + c ⋅ nb

T (n)

O Θ

A&D Learning Goals 2

 Know how to prove an iterative algorithm with an invariant, i.e. show ﻿ as base case,
﻿ as induction step and ﻿ as termination. You don’t have to do

this for recursive algorithms such as Merge Sort and Quick Sort.

 Know the lower bound for comparison based sorting, i.e. ﻿ and the proof with the
decision tree.

 Know that Bucket Sort exists and when it works

Data Structures
 Know the runtimes for inserting/deleting/… in an array/linked list/double linked list.

Be aware that the runtime of an algorithm depends on what data structure we use, e.g. binary
search or heap sort have a worse runtime with linked lists.

 Know the precise definition of a binary search tree and how to perform search/insert.

 Know the precise definition of 2-3-Trees and how to perform search/insert/delete. Don’t use
any other sources from the internet for 2-3-Trees, because the definitions are slightly different in
most cases.

Dynamic Programming
For the following problems, you should know the problem description and possible sub-problems.
Based on this you should be able to remember the base case, the recursion, the solution and the
runtime. It’s far more important that you understand the algorithms than that you know every detail
by heart. However the DP problems on the exam will probably be similar to them, so it definitely
helps if you understand them well. You should be able to explain them both on paper and program
them in ~30 minutes java.

 Fibonacci

 Maximum Subarray Sum

 Jump Game

 Longest Common Subsequence

 Edit Distance

 Subset Sum

 Knapsack (Be aware that there is an approximation algorithm, but you don’t have to describe it
in detail.)

 Longest Ascending Subsequence

 Know the difference between bottom-up (iterative) and top-down (recursive). You should be
comfortable implementing both versions. Understand why we use memoization.

 Know basic strategies for finding a subproblem, e.g. only look at the first ﻿ elements

 Describe backtracking in words for a given DP algorithm.

 Explain what pseudo polynomial means and in two sentences what the P vs NP problem is.

INV (0)
INV (j) ⟹ INV (j + 1) INV (n)

Ω(n log n)

i

A&D Learning Goals 3

Graph Theory
 Know the precise definitions of graph, node, edge, walk, path, closed walk, cycle, length,

degree, directed/undirected, weighted, (closed) Eulerian walk, Hamilton path/cycle, connected
component, tree, leaf, bipartite, DAG, adjacent, incident, in-degree, out-degree, sink, source

 Know how to prove statements about graphs. Use proof strategies from Discrete Mathematics
such as ﻿, proof by contradiction, disproving with a counterexample…

 Represent graphs as adjacency matrix/list and understand the different runtimes

 Handshake lemma for both directed/undirected graphs

 Know when there exists a (closed) Eulerian walk

 Understand the complexity difference between finding a closed Eulerian walk vs. a Hamilton
cycle.

 Know what a Topological Sorting is and when there exists one. Know that the reversed post
order is a topological sorting if there are no directed cycles.

 Given a graph on paper, perform DFS step by step and find pre/post numbers and classify
edges and draw the search tree. Understand what it means if there is a back edge. Know the
runtime.

 Given a graph on paper, perform BFS step by step and find enter/leave numbers and the
distances to s and draw the search tree. Understand the concept of level sets. Know the runtime.

 Program DFS and BFS. This should be a very easy task for you and shouldn’t take more than ~5
minutes. Practice this until you are very comfortable with it.

 Know what we mean by shortest paths in weighted graphs, and why we need the assumption
that there are no negative cycles.

 Given a graph on paper, perform Dijkstra step by step and find the shortest path tree and the
distances to s. Know that Dijkstra assumes that there are no negative edge weights. Know the
runtime. You should understand the pseudocode, but you don’t have to program it. (This has never
been asked in any exam)

 Know the pseudocode of Bellman Ford and the invariant “l-genaue Schranken” and improve
bounds procedure. Know how to detect negative cycles with Bellman Ford. Know the runtime. Be
aware that the order in which we iterate over the edges in one improve bounds iteration is not
determined.

 Know the precise definitions of, spanning edges, spanning tree, minimum spanning tree

 Know that the unique minimum weight edge crossing a cut is a critical edge (=sichere Kante).

 Given a graph on paper, perform Boruvka step by step and draw the MST. Know the runtime
and that it only works with unique edge weights. You never want to program it.

 Given a graph on paper, perform Prim step by step and draw the MST. Know the runtime. You
never want to program it.

 Given a graph on paper, perform Kruskal step by step and draw the MST. Know the runtime.
Ideally you know how to program Kruskal using the union find data structure. You can use a library
function to sort the edges by weight. It’s not crucial, but if you want a 5+ you should know how to
do it in ~25 minutes.

A → B ≡ ¬B → ¬A

A&D Learning Goals 4

 Know the subproblem, base case, recursion, solution and runtime of Floyd-Warshall. Again
being able to program it is not crucial, but if you want a 5.5+ you should know how to do it in ~20
minutes.

 Understand the general idea of Johnson with the height function and describe how it works in
a few sentences. You don’t have to program it.

 Know some creative tricks for graph exercises, e.g. Graph layering, adding more nodes,
creating a super node, flipping edges, inverting the edge weights, sorting edges, applying some
function to the edge weights… Check out my notes of week 12 for some concrete examples.

A&D Learning Goals 5

